Strong Morita Equivalence for Heisenberg C*-algebras and the Positive Cones of Their ^-groups
نویسنده
چکیده
Introduction. In [14] we began a study of C*-algebras corresponding to projective representations of the discrete Heisenberg group, and classified these C*-algebras up to *-isomorphism. In this sequel to [14] we continue the study of these so-called Heisenberg C*-algebras, first concentrating our study on the strong Morita equivalence classes of these C*-algebras. We recall from [14] that a Heisenberg C* -algebra is said to be of class /, / G {1, 2, 3}, if the range of any normalized trace on its K0 group has rank / as a subgroup of R; results of Curto, Muhly, and Williams [7] on strong Morita equivalence for crossed products along with the methods of [21] and [14] enable us to construct certain strong Morita equivalence bimodules for Heisenberg C*-algebras. For those of class 2 we are able to prove the following:
منابع مشابه
Completely positive inner products and strong Morita equivalence
We develop a general framework for the study of strong Morita equivalence in which C∗algebras and hermitian star products on Poisson manifolds are treated in equal footing. We compare strong and ring-theoretic Morita equivalences in terms of their Picard groupoids for a certain class of unital ∗-algebras encompassing both examples. Within this class, we show that both notions of Morita equivale...
متن کاملMorita Equivalence in Algebra and Geometry
We study the notion of Morita equivalence in various categories. We start with Morita equivalence and Morita duality in pure algebra. Then we consider strong Morita equivalence for C-algebras and Morita equivalence for W-algebras. Finally, we look at the corresponding notions for groupoids (with structure) and Poisson manifolds.
متن کاملStrong Morita Equivalence of Higher-dimensional Noncommutative Tori. Ii
We show that two C∗-algebraic noncommutative tori are strongly Morita equivalent if and only if they have isomorphic ordered K0-groups and centers, extending N. C. Phillips’s result in the case that the algebras are simple. This is also generalized to the twisted group C∗-algebras of arbitrary finitely generated abelian groups.
متن کاملGorenstein global dimensions for Hopf algebra actions
Let $H$ be a Hopf algebra and $A$ an $H$-bimodule algebra. In this paper, we investigate Gorenstein global dimensions for Hopf algebras and twisted smash product algebras $Astar H$. Results from the literature are generalized.
متن کاملON THE USE OF KULSHAMMER TYPE INVARIANTS IN REPRESENTATION THEORY
Since 2005 a new powerful invariant of an algebra has emerged using the earlier work of Horvath, Hethelyi, Kulshammer and Murray. The authors studied Morita invariance of a sequence of ideals of the center of a nite dimensional algebra over a eld of nite characteristic. It was shown that the sequence of ideals is actually a derived invariant, and most recently a slightly modied version o...
متن کامل